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GWAS: Genome-Wide Association Studies

Goal:
'“"‘"‘3'23'1“‘“‘“‘““" '"‘“"“g“l“‘““““‘““ Identify genetic mutations causal for disease
: Using a CHIP c‘a"r:t?:lsl;tpyspe
Input:

Disease case/control patients and cofactors
~1M genotyped common polymorphisms

Model:
Test each polymorphism against disease status

Output:
Variant-disease association



GWAS associations for complex traits

* Thousands of reported
associations

* Consistent replication across
cohorts

* Together explaining a large
fraction of heritable disease

* Genetic discovery is now mostly
a matter of sample size
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GWAS associations explain clinical outcomes



GWAS associations for clinical outcomes
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A coding variant in RARG confers susceptibility to
anthracycline-induced cardiotoxicity in childhood cancer
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Colin J D Ross!-311:14 & The Canadian Pharmacogenomics Network for Drug Safety Consortium!5



GWAS associations for clinical outcomes
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Two susceptibility loci identified for prostate cancer
aggressiveness
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GWAS associations for clinical outcomes
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A three-stage genome-wide association study identifies a
susceptibility locus for late radiotherapy toxicity at 2q24.1

Laura Fachall2, Antonio Gomez-Caamaio?, Gillian C Barnett4, Paula Peleteiro3, Ana M Carballo3,

Patricia Calvo-Crespo?, Sarah L Kerns>, Manuel Sanchez-Garcia% Ramoén Lobato-Busto®, Leila Dorling?,
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Barry S Rosenstein®, Catharine M L West?, Alison M Dunning? & Ana Vegal-2

African Ancestry Prostate Cancer GVWAS Consortium®, Joshua Sampson', Amanda Black', Kevin Jacobs", I
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GWAS associations for clinical outcomes
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Genome-wide association study identifies common
variants in SLC39A6 associated with length of survival in
esophageal squamous-cell carcinoma

( Chen Wul-2, Dong Lil, Weihua Jia3, Zhibin Hu?, Yifeng Zhou®, Dianke Yu!:2, Tong Tong!, Mingrong Wang],
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GWAS associations inform drug targets



GWAS associations support drug targets

RESEARCH ARTICLE

Are. drug targets with ge‘)netlc. supporjt twice “we find the use of human genetic
as I|kel>/ to be approvgd. Revised estimates . 1orc0 increases approval from Phase I
of the impact of genetic support for drug by greater than two-fold, and, for

mechanisms on the probability of drug Mendelian associations, the positive
approval association holds prospectively”

Emily A. King *, J. Wade Davis, Jacob F. Degner



GWAS results can predict genetic risk



Polygenic Risk Prediction (PRS) from GWAS

Prevalence of CAD (%)
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“For coronary artery disease, [high PRS] prevalence is 20-
fold higher than the carrier frequency of rare monogenic
mutations conferring comparable risk. We propose that it
is time to contemplate the inclusion of polygenic risk
prediction in clinical care, and discuss relevant issues.”

Khera et al. 2018 Nat Genet



Polygenic score modifies monogenic risk

Hereditary breast and ovarian
go 4 cancer variant

= Carriers

e Noncarriers

Probability of breast cancer by age 75 years (%) (
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Fahed et al. 2020 Nat Comms



Barriers for GWAS



Barriers: Individual-level privacy

Individuals with disease  Individuals without disease

Using a CHIP can genotype
500,000 - 5 Million SNPs

SNP 1
No association
to disease

SNP 2
No association
to disease

SNP 3
Associated
to disease
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Barriers: Individual-level privacy

Individuals with disease  Individuals without disease

oy Using a CHIP can genotype

(7} () 500,000 - 5 Million SNPs

Identifying Personal Genomes by
Surname Inference

Melissa Gymrek,>** Amy L. McGuire,? David Golan,® Eran Halperin,”®° Yaniv Erlich®*

Sharing sequencing data sets without identifiers has become a common practice in genomics.
Here, we report that surnames can be recovered from personal genomes by profiling short tandem
repeats on the Y chromosome (Y-STRs) and querying recreational genetic genealogy databases.
We show that a combination of a surname with other types of metadata, such as age and state,
can be used to triangulate the identity of the target. A key feature of this technique is that it entirely
relies on free, publicly accessible Internet resources. We quantitatively analyze the probability of
identification for U.S. males. We further demonstrate the feasibility of this technique by tracing back
with high probability the identities of multiple participants in public sequencing projects.




Barriers: Sensitive data sharing

Individuals with disease  Individuals without disease

Using a CHIP can genotype
500,000 - 5 Million SNPs

SNP 1
No association
to disease

Dr. Jekyll’s data

SNP 2
No association
to disease

Dr. Hyde’s data

SNP 3
Associated
to disease
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Barriers: Scalability

Risk
Prediction
accuracy

AUC

Crohn’s disease

Breast cancer
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Solution: Secure, Encrypted GWAS



Previous work: secure multi-party GWAS

Encrypted computing approach: secure multi-party computation!1]
e Statistical test: Cochran Armitage trend test
* Benchmark GWAS: 26k samples x 260k SNPs

Results:

* Runtime on 100k samples x 500k SNPs: 193 hours

* Requires live, interactive communication

* Logistic regression “does not yield a practical runtime”

* Expect that HE would be 5,000-10,000x slower and infeasible!?]

[1] Cho et al. 2018 Nat Biotechnol; [2] Jagadeesh et al. 2017 Science



Results

Algorithm

Prior MPC work

Multi-party computation

Our HE work

Homomorphic encryption

Statistical test

Cochran Armitage Trend (CAT)

Allelic y? (CAT equivalent)
Logistic regression

Dataset

26k samples x 260k SNPs + extrapolation

Accuracy of test

Nearly perfect

Runtime on
100k samples x 500k SNPs

193 hours
Practically impossible

5.6 hours
234 hours (log reg)




No loss in accuracy overall

Z-VALUE
(Cor=1.000; a1=1.00 a0=0.00 R2=1.000)

FPR: 0.000 TNR: 1.000”

SP Logit HE Approx in the Clear

PR: 1.000 FNR: 0.000

20-
20 10 0 10
Semi-parallel Homomorphic Encrypted Computation



No loss in accuracy for top hits

Clear Encrypted Clear Encrypted

OR OR Chin2 Chin2

rs2230199_C 1.40 1.40 263.13 263.13
rs114203272_T 0.64 0.64 61.11 61.11
rs10033900_T 1.13 1.13 51.64 51.64
rs943080_C 0.89 0.89 41.76 41.76
rs2043085_T 0.89 0.89 41.40 41.40
rs8135665_T 1.13 1.13 33.96 33.96
rs79037040_G 0.92 0.92 25.35 25.35
rs114212178_T 0.82 0.82 6.72 6.72




No loss in accuracy for genomic pre

Logit (computed in the clear)
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FPR: 0.010

(Cor=1.000; a1=1.02 a0=0.06 R2=1.000)

Polygenic Risk Scores
(pval < 5 107(-8))

TNR: 0.
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Allele Chi2 (Homomorphic Encrypted Computation)

FNR: 0.005
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Minutes

Scalable beyond 100,000 individuals
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Secure-GWAS: Opportunities

GWAS identifies causal mutations, drug targets, and risk/outcome
predictors ... but effective GWAS is not possible without data sharing

Secure-GWAS for researchers:
* GWAS across institutions without data sharing
* Secure collaboration on sensitive phenotypes

Secure-GWAS for individuals:
* Participate in studies on-demand without sacrificing privacy



