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HOMOMORPHIC ENCRYPTION FOR PALISADE USERS 
• Tutorial with applications consisting of 3 episodes (6 lectures)
• Episode 1

• Introduction to Homomorphic Encryption
• Boolean Arithmetic with Applications

• Episode 2
• Integer Arithmetic
• Applications of Homomorphic Encryption over Integers

• Episode 3
• Approximate Number Arithmetic
• Applications of Homomorphic Encryption over Approximate Numbers
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PREREQUISITES FOR THIS TALK
• Webinar #2A: Introduction to Homomorphic Encryption 

(https://www.youtube.com/watch?v=rMDoZdH53ZM)
• Other related webinars can be accessed at https://palisade-crypto.org/webinars/

https://www.youtube.com/watch?v=rMDoZdH53ZM
https://palisade-crypto.org/webinars/
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AGENDA
• Basics

• What arithmetic operations are supported?
• What data structures are used?
• Complete list of primitive operations

• Data encoding techniques

• Parameter selection
• Plaintext modulus
• Ciphertext modulus / Multiplicative depth
• Ciphertext dimension / Security level

• Which scheme to choose?
• Code example

• More advanced topics
• Higher-level operations
• Further encoding-related topics
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Basics
Explains supported operations and data structures
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WHAT ARITHEMTIC OPERATIONS ARE SUPPORTED?
• Exact integer arithmetic

• Encrypt small integers and perform addition and multiplication, as long as the result does not exceed some 
fixed bound, for instance, if the bound is 10000

• 123 + 456 → 579
• 12 * 432 → 5184
• 35 * 537 → overflow

• Most common scenario
• In PALISADE, the maximum supported bound is 232 (by design), i.e., the support is limited to 32-bit integers

• Modular integer arithmetic (finite fields)
• Encrypt 8-bit unsigned integers (between 0 and 255) and perform addition and multiplication modulo 256

• 128 + 128 → 0
• 2 * 129 → 2

• Used only for special use cases
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WHAT DATA STRUCTURES ARE USED?
• The main data structure is a vector (array) of bounded integers

• Many integers (typically between 2K and 64K) are “packed” in one vector (ciphertext)
• Let us denote the vector size as n (a power of two)

• Addition and multiplication of n integers can be done using a single addition/multiplication
• Similar to Single Instruction Multiple Data (SIMD) instruction sets available on many modern processors
• The SIMD capability should be used as much as possible to achieve best efficiency

• Rotation operation is added to allow accessing the value at a specific index of the array
• Addition, multiplication, and rotation are three primitive operations in integer HE

• More advanced structures are supported but they are used less frequently and typically require more 
advanced math knowledge, including

• Matrices of bounded integers
• Polynomials with bounded coefficients
• High-precision integers (one per ciphertext)
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COMPLETE LIST OF PRIMITIVE OPERATIONS
• Two-argument operations (the plaintext can represent a vector or a scalar)

• Ciphertext-Ciphertext addition: EvalAdd
• Ciphertext-Plaintext addition: EvalAdd
• Ciphertext-Ciphertext multiplication: EvalMult
• Ciphertext-Plaintext multiplication: EvalMult
• Ciphertext-Ciphertext subtraction: EvalSub
• Ciphertext-Plaintext subtraction: EvalSub

• Unary operations
• Negation: EvalNegate
• Vector rotation: EvalAtIndex

• The result of all these operations is a ciphertext, i.e., an encrypted vector
• The benefit of this in practice is that mixed model-data modes can be supported, e.g.,

• Encrypted model, data in the clear
• Model in the clear, encrypted data
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Data encoding 
techniques
Introduces main data encoding techniques used in 
integer HE
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MAIN DATA ENCODING TECHNIQUE
• Standard packing: PackedEncoding

• Packs bounded integers into a vector of size n
• Supports component-wise addition (EvalAdd) and multiplication (EvalMult)

[ 1 ]   [ 4 ]   [ 5 ]   [ 1 ]   [ 4 ] [ 4 ]  
[ 2 ] + [ 5 ] = [ 7 ],  [ 2 ] * [ 5 ] = [ 10 ]
[ 3 ]   [ 6 ]   [ 9 ]   [ 3 ] [ 6 ] [ 18 ]  

• Adds a new rotation operation (EvalAtIndex)
• Right shift: positive index
• Left shift: negative index
• Rotations work cyclically over two equal “subvectors” of size n/2

• Used almost always



12

OTHER (RARELY USED) DATA ENCODING TECHNIQUES
• Coefficient packing: CoefPackedEncoding

• Packs bounded integers into a vector of size n
• Supports only component-wise addition (EvalAdd) but not multiplication
• Scalar multiplication and limited rotation capability are also supported
• Typically works well when no multiplications are needed

• Integer encoding: IntegerEncoding
• Packs one integer into one ciphertext
• Supports high-precision arithmetic but is not does not utilize packing (much slower)
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Parameter selection
Explains main parameters and provides 
recommendations for their selection



14

MAIN PARAMETERS
• Plaintext modulus p

• The bound for integer arithmetic
• The modulus for modular arithmetic

• Ciphertext modulus q
• Functional parameter that determines how many computations are allowed (how much noise can be tolerated)
• Often set implicitly using the value of multiplicative depth specified by the user

• Ciphertext dimension n
• Minimum value is computed based on the desired security level and ciphertext modulus q
• It is also the size of the vector of encrypted integers when standard or coefficient packing is used
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GUIDELINES FOR SETTING PLAINTEXT MODULUS
• In the case of exact integer arithmetic, the plaintext modulus p should be large enough to avoid an 

overflow
• As we do not know the encrypted value, p should be estimated using the worst-case assumption

• If we have two inputs a in [0,18] and b in [0,257] and we need to compute a*b, the value of p should be at least 
18*257+1 = 4627

• If we use standard packing (PackedEncoding), we have to compute a special prime that is compatible with 
this encoding method

• auto plaintextModulus = FirstPrime<NativeInteger>(bits, 2*n);
• bits – the plaintext modulus should be at least 2bits based on computation requirements
• If n is not known (automatically computed), you can use n = 65,536

• A convenient plaintext modulus for most cases: p = 65,537
• For all other encoding types, an arbitrary plaintext modulus can be used as long as it does not overflow in 

the case of exact integer arithmetic
• Overflow is not an issue for modular integer arithmetic
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GUIDELINES FOR SETTING CIPHERTEXT MODULUS
• Ciphertext modulus q is the main functional parameter that is determined by the computation

• Each arithmetic operation increases the noise, and q should be large enough to accommodate the noise from all 
arithmetic operations

• From the noise perspective, multiplication is much costlier than addition
• In PALISADE, q is automatically computed based on the multiplicative depth and plaintext modulus p

• Multiplicative depth is not necessarily the number of multiplications
• For example, if we need to compute a*b*c*d, we can compute e=a*b and f=c*d using one level, and then 

compute e*f using the second level. So we use 2 levels (depth of 2) rather 3 if we were to do the multiplication 
sequentially.

• This technique is called binary tree multiplication, and it should be used to minimize the multiplicative depth 
wherever possible.
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GUIDELINES FOR SETTING CIPHERTEXT DIMENSION
• Ciphertexts are represented as two arrays of size n
• This size n, called ciphertext dimension, should have a certain minimum value to comply with the chosen 

security level and desired ciphertext modulus

• Main options for security levels in PALISADE (we implemented the recommendations from the HE 
standard published at HomomorphicEncryption.org):

• HEStd_128_classic – 128-bit security against classical computers 
• HEStd_192_classic – 192-bit security against classical computers 
• HEStd_256_classic – 256-bit security against classical computers 
• HEStd_NotSet – toy settings (for debugging and prototype development)

• The ciphertext dimension n also determines the size of the vector of encrypted integers. 
• It may sometimes be useful to use a larger ring dimension than the minimum one needed for security. 
• In this case, the user can specify the ring dimension explicitly.
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Which scheme to 
choose?
Introduces BFV and BGV, and explains main 
differences between them
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BFV and BGV schemes
• Brakerski/Fan-Vercauteren (BFV) scheme

• Use the Most Significant Digit (MSD) form to encode messages
• The ciphertext modulus is constant while the noise increases with every operation
• Has an expensive homomorphic multiplication operation
• Two roughly equivalent variants are implemented in PALISADE: BFVrns and BFVrnsB (a mixed multiprecison-RNS 

variant BFV has been supported since 2017 but it is not recommended anymore as it is much less efficient)
• BFVrns is slightly faster and has been more exhaustively stress-tested in PALISADE
• BFVrns was added in December 2017
• BFVrnsB was added in June 2018

• Brakerski-Gentry-Vaikuntanathan (BGV) scheme
• Use the Least Significant Digit (LSD) form to encode messages
• Maintains the same level of noise by reducing the ciphertext modulus after each multiplication
• Supports much faster homomorphic multiplication
• Called BGVrns in PALISADE (a mixed multiprecision-RNS variant BGV has been supported since 2017 but it is not 

recommended anymore as it is much less efficient)
• BGVrns was recently added in v1.10 (June 2020)
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BGV and BFV schemes
• Notes on the current implementation in PALISADE

• Theoretically speaking, BGV and BFV have roughly the same noise growth
• But the current BGV implementation in PALISADE does not yet select the most efficient parameters by default

• Most efficient parameters can be set manually but require FHE expertise
• Some further improvements to BGV will be added in the next version of PALISADE

• Recommendations
• For production-like deployments, BFVrns is recommended
• BGVrns may give better performance for many computations, especially where many homomorphic 

multiplications are performed
• This implementation can be used in research projects
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Code example
Explains a simple example showing how to do 
additions, multiplications, and rotations in BFVrns
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KEY CONCEPTS/CLASSES
• CryptoContext

• A wrapper that encapsulates the scheme, crypto parameters, encoding parameters, and keys
• Provides the same API for all HE schemes

• Ciphertext
• Stores the ciphertext polynomials

• Plaintext
• Stores the plaintext data (both raw and encoded)
• Supports multiple encodings in a polymorphic manner, including PackedEncoding, IntegerEncodering, 

CoefPackedEncoding.
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STEP 1 – SET CRYPTOCONTEXT
// Set the main parameters
int plaintextModulus = 65537;
double sigma = 3.2;
SecurityLevel securityLevel = HEStd_128_classic;
uint32_t depth = 2;

// Instantiate the crypto context
CryptoContext<DCRTPoly> cryptoContext =

CryptoContextFactory<DCRTPoly>::genCryptoContextBFVrns(
plaintextModulus, securityLevel, sigma, 0, depth, 0, OPTIMIZED);

// Enable features that you wish to use
cryptoContext->Enable(ENCRYPTION);
cryptoContext->Enable(SHE);



24

STEP 2 – KEY GENERATION

// Initialize Public Key Containers
LPKeyPair<DCRTPoly> keyPair;

// Generate a public/private key pair
keyPair = cryptoContext->KeyGen();

// Generate the relinearization key
cryptoContext->EvalMultKeyGen(keyPair.secretKey);

// Generate the rotation evaluation keys
cryptoContext->EvalAtIndexKeyGen(keyPair.secretKey, {1, 2, -1, -2});
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STEP 3 – ENCRYPTION
// First plaintext vector is encoded
std::vector<int64_t> vectorOfInts1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
Plaintext plaintext1 = cryptoContext->MakePackedPlaintext(vectorOfInts1);
// Second plaintext vector is encoded
std::vector<int64_t> vectorOfInts2 = {3, 2, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12};
Plaintext plaintext2 = cryptoContext->MakePackedPlaintext(vectorOfInts2);
// Third plaintext vector is encoded
std::vector<int64_t> vectorOfInts3 = {1, 2, 5, 2, 5, 6, 7, 8, 9, 10, 11, 12};
Plaintext plaintext3 = cryptoContext->MakePackedPlaintext(vectorOfInts3);

// The encoded vectors are encrypted
auto ciphertext1 = cryptoContext->Encrypt(keyPair.publicKey, plaintext1);
auto ciphertext2 = cryptoContext->Encrypt(keyPair.publicKey, plaintext2);
auto ciphertext3 = cryptoContext->Encrypt(keyPair.publicKey, plaintext3);
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STEP 4 – EVALUATION
// Homomorphic additions
auto ciphertextAdd12 = cryptoContext->EvalAdd(ciphertext1, ciphertext2);
auto ciphertextAddResult =

cryptoContext->EvalAdd(ciphertextAdd12, ciphertext3);

// Homomorphic multiplications
auto ciphertextMul12 = cryptoContext->EvalMult(ciphertext1, ciphertext2);
auto ciphertextMultResult =

cryptoContext->EvalMult(ciphertextMul12, ciphertext3);

// Homomorphic rotations
auto ciphertextRot1 = cryptoContext->EvalAtIndex(ciphertext1, 1);
auto ciphertextRot2 = cryptoContext->EvalAtIndex(ciphertext1, 2);
auto ciphertextRot3 = cryptoContext->EvalAtIndex(ciphertext1, -1);
auto ciphertextRot4 = cryptoContext->EvalAtIndex(ciphertext1, -2);
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STEP 5 – DECRYPTION
// Decrypt the result of additions
Plaintext plaintextAddResult;
cryptoContext->Decrypt(keyPair.secretKey, ciphertextAddResult, &plaintextAddResult);

// Decrypt the result of multiplications
Plaintext plaintextMultResult;
cryptoContext->Decrypt(keyPair.secretKey, ciphertextMultResult, &plaintextMultResult);

// Decrypt the result of rotations
Plaintext plaintextRot1;
cryptoContext->Decrypt(keyPair.secretKey, ciphertextRot1, &plaintextRot1);
Plaintext plaintextRot2;
cryptoContext->Decrypt(keyPair.secretKey, ciphertextRot2, &plaintextRot2);
Plaintext plaintextRot3;
cryptoContext->Decrypt(keyPair.secretKey, ciphertextRot3, &plaintextRot3);
Plaintext plaintextRot4;
cryptoContext->Decrypt(keyPair.secretKey, ciphertextRot4, &plaintextRot4);



28

More advanced 
topics
Explains some non-primitive operations available 
in PALISADE and further encoding-related topics
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SELECTED HIGHER-LEVEL OPERATIONS

Operation Input 
arguments

Description

EvalSum ciphertext, 
batchSize

Computes a sum of batchSize components in an encrypted vector; if 
batchSize < n, the vector of size batchSize needs to be replicated 
n/batchSize times

EvalInnerProduct 2 ciphertexts,
batchSize

Multiplies two vectors, and then computes EvalSum

EvalMultMany k ciphertexts Computes a product of k ciphertexts using the binary tree approach (only 
log k depth is needed)

EvalMerge k ciphertexts Merges k ciphertexts with encrypted results in first slot into a ciphertext 
with k slots
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MULTIPLE WAYS TO DO ADDITION
• Let us say we need to add 128 integers.

• Assume the ciphertext dimension is 4K. 
• How we pack the data to get the most efficient result?

• Option 1 (Internal Addition)
• Pack 128 integers into a single ciphertext and run EvalSum.
• This requires log 128 = 7 rotations (rotations are roughly 100x more expensive than EvalAdd).

• Option 2 (External Addition)
• Put each integer into a separate ciphertext: 128 ciphertexts in total.
• Addition requires 128 EvalAdds (vs roughly 700 EvalAdds in Option 1). 
• Much faster than Option 1 but requires 128x storage.

• Depending on the tradeoff between runtime and storage, we may choose option 1 or 2 or a hybrid of the 
two approaches
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HOW TO ENCODE NON-INTEGERS?
• Any real number can be represented as an integer based on desired fixed precision
• For example, we have a variable in the range [-7,10] and we need to support 2 decimal digits of precision

• We can encode -7.00 as -700, -6.99 as -699, -6.98 as -698, …, 9.99 as 999, and 10.00 as 100.
• We need to choose p such that any input/intermediate/output values lie between –p/2 and p/2.
• The result needs to be scaled down to compensate for the initial scaling and any multiplications during the 

computation.

• Limitations of this approach
• Only exact computations are supported: to support a larger magnitude of integers (more computations), we 

need to choose a larger plaintext modulus p.
• Approximate homomorphic encryption is a much better option for this (next month’s webinar).
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SELECTING CIPHERTEXT MODULUS REVISITED
• Typically the ciphertext modulus is determined by the multiplicative depth

• However there are applications where we have a large number of additions
• For example, when we represent a scalar multiplication as many additions to use a smaller ciphertext modulus

• In this case, a large number of additions (thousands) can be equivalent to one or more multiplications
• We can compute an effective depth to account for the extra noise introduced by many additions

• In such scenarios, BFV is the scheme to use (BGV is built around the multiplicative depth)
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THANK YOU

https://palisade-crypto.org

ypolyakov@dualitytech.com

https://palisade-crypto.org/
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