
HOMOMORPHIC ENCRYPTION FOR PALISADE USERS:
TUTORIAL WITH APPLICATIONS

October 2, 2020

Yuriy Polyakov
David Bruce Cousins

contact@palisade-crypto.org

2

HOMOMORPHIC ENCRYPTION FOR PALISADE USERS
• Tutorial with applications consisting of 3 episodes (6 lectures)
• Episode 1

• Introduction to Homomorphic Encryption
• Boolean Arithmetic with Applications

• Episode 2
• Integer Arithmetic
• Applications of Homomorphic Encryption over Integers

• Episode 3
• Approximate Number Arithmetic
• Applications of Homomorphic Encryption over Approximate Numbers

HOMOMORPHIC ENCRYPTION FOR PALISADE USERS:
TUTORIAL WITH APPLICATIONS

Integer Arithmetic

Yuriy Polyakov
ypolyakov@dualitytech.com

4

PREREQUISITES FOR THIS TALK
• Webinar #2A: Introduction to Homomorphic Encryption

(https://www.youtube.com/watch?v=rMDoZdH53ZM)
• Other related webinars can be accessed at https://palisade-crypto.org/webinars/

https://www.youtube.com/watch?v=rMDoZdH53ZM
https://palisade-crypto.org/webinars/

5

AGENDA
• Basics

• What arithmetic operations are supported?
• What data structures are used?
• Complete list of primitive operations

• Data encoding techniques

• Parameter selection
• Plaintext modulus
• Ciphertext modulus / Multiplicative depth
• Ciphertext dimension / Security level

• Which scheme to choose?
• Code example

• More advanced topics
• Higher-level operations
• Further encoding-related topics

6

Basics
Explains supported operations and data structures

7

WHAT ARITHEMTIC OPERATIONS ARE SUPPORTED?
• Exact integer arithmetic

• Encrypt small integers and perform addition and multiplication, as long as the result does not exceed some
fixed bound, for instance, if the bound is 10000

• 123 + 456 → 579
• 12 * 432 → 5184
• 35 * 537 → overflow

• Most common scenario
• In PALISADE, the maximum supported bound is 232 (by design), i.e., the support is limited to 32-bit integers

• Modular integer arithmetic (finite fields)
• Encrypt 8-bit unsigned integers (between 0 and 255) and perform addition and multiplication modulo 256

• 128 + 128 → 0
• 2 * 129 → 2

• Used only for special use cases

8

WHAT DATA STRUCTURES ARE USED?
• The main data structure is a vector (array) of bounded integers

• Many integers (typically between 2K and 64K) are “packed” in one vector (ciphertext)
• Let us denote the vector size as n (a power of two)

• Addition and multiplication of n integers can be done using a single addition/multiplication
• Similar to Single Instruction Multiple Data (SIMD) instruction sets available on many modern processors
• The SIMD capability should be used as much as possible to achieve best efficiency

• Rotation operation is added to allow accessing the value at a specific index of the array
• Addition, multiplication, and rotation are three primitive operations in integer HE

• More advanced structures are supported but they are used less frequently and typically require more
advanced math knowledge, including

• Matrices of bounded integers
• Polynomials with bounded coefficients
• High-precision integers (one per ciphertext)

9

COMPLETE LIST OF PRIMITIVE OPERATIONS
• Two-argument operations (the plaintext can represent a vector or a scalar)

• Ciphertext-Ciphertext addition: EvalAdd
• Ciphertext-Plaintext addition: EvalAdd
• Ciphertext-Ciphertext multiplication: EvalMult
• Ciphertext-Plaintext multiplication: EvalMult
• Ciphertext-Ciphertext subtraction: EvalSub
• Ciphertext-Plaintext subtraction: EvalSub

• Unary operations
• Negation: EvalNegate
• Vector rotation: EvalAtIndex

• The result of all these operations is a ciphertext, i.e., an encrypted vector
• The benefit of this in practice is that mixed model-data modes can be supported, e.g.,

• Encrypted model, data in the clear
• Model in the clear, encrypted data

10

Data encoding
techniques
Introduces main data encoding techniques used in
integer HE

11

MAIN DATA ENCODING TECHNIQUE
• Standard packing: PackedEncoding

• Packs bounded integers into a vector of size n
• Supports component-wise addition (EvalAdd) and multiplication (EvalMult)

[1] [4] [5] [1] [4] [4]
[2] + [5] = [7], [2] * [5] = [10]
[3] [6] [9] [3] [6] [18]

• Adds a new rotation operation (EvalAtIndex)
• Right shift: positive index
• Left shift: negative index
• Rotations work cyclically over two equal “subvectors” of size n/2

• Used almost always

12

OTHER (RARELY USED) DATA ENCODING TECHNIQUES
• Coefficient packing: CoefPackedEncoding

• Packs bounded integers into a vector of size n
• Supports only component-wise addition (EvalAdd) but not multiplication
• Scalar multiplication and limited rotation capability are also supported
• Typically works well when no multiplications are needed

• Integer encoding: IntegerEncoding
• Packs one integer into one ciphertext
• Supports high-precision arithmetic but is not does not utilize packing (much slower)

13

Parameter selection
Explains main parameters and provides
recommendations for their selection

14

MAIN PARAMETERS
• Plaintext modulus p

• The bound for integer arithmetic
• The modulus for modular arithmetic

• Ciphertext modulus q
• Functional parameter that determines how many computations are allowed (how much noise can be tolerated)
• Often set implicitly using the value of multiplicative depth specified by the user

• Ciphertext dimension n
• Minimum value is computed based on the desired security level and ciphertext modulus q
• It is also the size of the vector of encrypted integers when standard or coefficient packing is used

15

GUIDELINES FOR SETTING PLAINTEXT MODULUS
• In the case of exact integer arithmetic, the plaintext modulus p should be large enough to avoid an

overflow
• As we do not know the encrypted value, p should be estimated using the worst-case assumption

• If we have two inputs a in [0,18] and b in [0,257] and we need to compute a*b, the value of p should be at least
18*257+1 = 4627

• If we use standard packing (PackedEncoding), we have to compute a special prime that is compatible with
this encoding method

• auto plaintextModulus = FirstPrime<NativeInteger>(bits, 2*n);
• bits – the plaintext modulus should be at least 2bits based on computation requirements
• If n is not known (automatically computed), you can use n = 65,536

• A convenient plaintext modulus for most cases: p = 65,537
• For all other encoding types, an arbitrary plaintext modulus can be used as long as it does not overflow in

the case of exact integer arithmetic
• Overflow is not an issue for modular integer arithmetic

16

GUIDELINES FOR SETTING CIPHERTEXT MODULUS
• Ciphertext modulus q is the main functional parameter that is determined by the computation

• Each arithmetic operation increases the noise, and q should be large enough to accommodate the noise from all
arithmetic operations

• From the noise perspective, multiplication is much costlier than addition
• In PALISADE, q is automatically computed based on the multiplicative depth and plaintext modulus p

• Multiplicative depth is not necessarily the number of multiplications
• For example, if we need to compute a*b*c*d, we can compute e=a*b and f=c*d using one level, and then

compute e*f using the second level. So we use 2 levels (depth of 2) rather 3 if we were to do the multiplication
sequentially.

• This technique is called binary tree multiplication, and it should be used to minimize the multiplicative depth
wherever possible.

17

GUIDELINES FOR SETTING CIPHERTEXT DIMENSION
• Ciphertexts are represented as two arrays of size n
• This size n, called ciphertext dimension, should have a certain minimum value to comply with the chosen

security level and desired ciphertext modulus

• Main options for security levels in PALISADE (we implemented the recommendations from the HE
standard published at HomomorphicEncryption.org):

• HEStd_128_classic – 128-bit security against classical computers
• HEStd_192_classic – 192-bit security against classical computers
• HEStd_256_classic – 256-bit security against classical computers
• HEStd_NotSet – toy settings (for debugging and prototype development)

• The ciphertext dimension n also determines the size of the vector of encrypted integers.
• It may sometimes be useful to use a larger ring dimension than the minimum one needed for security.
• In this case, the user can specify the ring dimension explicitly.

18

Which scheme to
choose?
Introduces BFV and BGV, and explains main
differences between them

19

BFV and BGV schemes
• Brakerski/Fan-Vercauteren (BFV) scheme

• Use the Most Significant Digit (MSD) form to encode messages
• The ciphertext modulus is constant while the noise increases with every operation
• Has an expensive homomorphic multiplication operation
• Two roughly equivalent variants are implemented in PALISADE: BFVrns and BFVrnsB (a mixed multiprecison-RNS

variant BFV has been supported since 2017 but it is not recommended anymore as it is much less efficient)
• BFVrns is slightly faster and has been more exhaustively stress-tested in PALISADE
• BFVrns was added in December 2017
• BFVrnsB was added in June 2018

• Brakerski-Gentry-Vaikuntanathan (BGV) scheme
• Use the Least Significant Digit (LSD) form to encode messages
• Maintains the same level of noise by reducing the ciphertext modulus after each multiplication
• Supports much faster homomorphic multiplication
• Called BGVrns in PALISADE (a mixed multiprecision-RNS variant BGV has been supported since 2017 but it is not

recommended anymore as it is much less efficient)
• BGVrns was recently added in v1.10 (June 2020)

20

BGV and BFV schemes
• Notes on the current implementation in PALISADE

• Theoretically speaking, BGV and BFV have roughly the same noise growth
• But the current BGV implementation in PALISADE does not yet select the most efficient parameters by default

• Most efficient parameters can be set manually but require FHE expertise
• Some further improvements to BGV will be added in the next version of PALISADE

• Recommendations
• For production-like deployments, BFVrns is recommended
• BGVrns may give better performance for many computations, especially where many homomorphic

multiplications are performed
• This implementation can be used in research projects

21

Code example
Explains a simple example showing how to do
additions, multiplications, and rotations in BFVrns

22

KEY CONCEPTS/CLASSES
• CryptoContext

• A wrapper that encapsulates the scheme, crypto parameters, encoding parameters, and keys
• Provides the same API for all HE schemes

• Ciphertext
• Stores the ciphertext polynomials

• Plaintext
• Stores the plaintext data (both raw and encoded)
• Supports multiple encodings in a polymorphic manner, including PackedEncoding, IntegerEncodering,

CoefPackedEncoding.

23

STEP 1 – SET CRYPTOCONTEXT
// Set the main parameters
int plaintextModulus = 65537;
double sigma = 3.2;
SecurityLevel securityLevel = HEStd_128_classic;
uint32_t depth = 2;

// Instantiate the crypto context
CryptoContext<DCRTPoly> cryptoContext =

CryptoContextFactory<DCRTPoly>::genCryptoContextBFVrns(
plaintextModulus, securityLevel, sigma, 0, depth, 0, OPTIMIZED);

// Enable features that you wish to use
cryptoContext->Enable(ENCRYPTION);
cryptoContext->Enable(SHE);

24

STEP 2 – KEY GENERATION

// Initialize Public Key Containers
LPKeyPair<DCRTPoly> keyPair;

// Generate a public/private key pair
keyPair = cryptoContext->KeyGen();

// Generate the relinearization key
cryptoContext->EvalMultKeyGen(keyPair.secretKey);

// Generate the rotation evaluation keys
cryptoContext->EvalAtIndexKeyGen(keyPair.secretKey, {1, 2, -1, -2});

25

STEP 3 – ENCRYPTION
// First plaintext vector is encoded
std::vector<int64_t> vectorOfInts1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
Plaintext plaintext1 = cryptoContext->MakePackedPlaintext(vectorOfInts1);
// Second plaintext vector is encoded
std::vector<int64_t> vectorOfInts2 = {3, 2, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12};
Plaintext plaintext2 = cryptoContext->MakePackedPlaintext(vectorOfInts2);
// Third plaintext vector is encoded
std::vector<int64_t> vectorOfInts3 = {1, 2, 5, 2, 5, 6, 7, 8, 9, 10, 11, 12};
Plaintext plaintext3 = cryptoContext->MakePackedPlaintext(vectorOfInts3);

// The encoded vectors are encrypted
auto ciphertext1 = cryptoContext->Encrypt(keyPair.publicKey, plaintext1);
auto ciphertext2 = cryptoContext->Encrypt(keyPair.publicKey, plaintext2);
auto ciphertext3 = cryptoContext->Encrypt(keyPair.publicKey, plaintext3);

26

STEP 4 – EVALUATION
// Homomorphic additions
auto ciphertextAdd12 = cryptoContext->EvalAdd(ciphertext1, ciphertext2);
auto ciphertextAddResult =

cryptoContext->EvalAdd(ciphertextAdd12, ciphertext3);

// Homomorphic multiplications
auto ciphertextMul12 = cryptoContext->EvalMult(ciphertext1, ciphertext2);
auto ciphertextMultResult =

cryptoContext->EvalMult(ciphertextMul12, ciphertext3);

// Homomorphic rotations
auto ciphertextRot1 = cryptoContext->EvalAtIndex(ciphertext1, 1);
auto ciphertextRot2 = cryptoContext->EvalAtIndex(ciphertext1, 2);
auto ciphertextRot3 = cryptoContext->EvalAtIndex(ciphertext1, -1);
auto ciphertextRot4 = cryptoContext->EvalAtIndex(ciphertext1, -2);

27

STEP 5 – DECRYPTION
// Decrypt the result of additions
Plaintext plaintextAddResult;
cryptoContext->Decrypt(keyPair.secretKey, ciphertextAddResult, &plaintextAddResult);

// Decrypt the result of multiplications
Plaintext plaintextMultResult;
cryptoContext->Decrypt(keyPair.secretKey, ciphertextMultResult, &plaintextMultResult);

// Decrypt the result of rotations
Plaintext plaintextRot1;
cryptoContext->Decrypt(keyPair.secretKey, ciphertextRot1, &plaintextRot1);
Plaintext plaintextRot2;
cryptoContext->Decrypt(keyPair.secretKey, ciphertextRot2, &plaintextRot2);
Plaintext plaintextRot3;
cryptoContext->Decrypt(keyPair.secretKey, ciphertextRot3, &plaintextRot3);
Plaintext plaintextRot4;
cryptoContext->Decrypt(keyPair.secretKey, ciphertextRot4, &plaintextRot4);

28

More advanced
topics
Explains some non-primitive operations available
in PALISADE and further encoding-related topics

29

SELECTED HIGHER-LEVEL OPERATIONS

Operation Input
arguments

Description

EvalSum ciphertext,
batchSize

Computes a sum of batchSize components in an encrypted vector; if
batchSize < n, the vector of size batchSize needs to be replicated
n/batchSize times

EvalInnerProduct 2 ciphertexts,
batchSize

Multiplies two vectors, and then computes EvalSum

EvalMultMany k ciphertexts Computes a product of k ciphertexts using the binary tree approach (only
log k depth is needed)

EvalMerge k ciphertexts Merges k ciphertexts with encrypted results in first slot into a ciphertext
with k slots

30

MULTIPLE WAYS TO DO ADDITION
• Let us say we need to add 128 integers.

• Assume the ciphertext dimension is 4K.
• How we pack the data to get the most efficient result?

• Option 1 (Internal Addition)
• Pack 128 integers into a single ciphertext and run EvalSum.
• This requires log 128 = 7 rotations (rotations are roughly 100x more expensive than EvalAdd).

• Option 2 (External Addition)
• Put each integer into a separate ciphertext: 128 ciphertexts in total.
• Addition requires 128 EvalAdds (vs roughly 700 EvalAdds in Option 1).
• Much faster than Option 1 but requires 128x storage.

• Depending on the tradeoff between runtime and storage, we may choose option 1 or 2 or a hybrid of the
two approaches

31

HOW TO ENCODE NON-INTEGERS?
• Any real number can be represented as an integer based on desired fixed precision
• For example, we have a variable in the range [-7,10] and we need to support 2 decimal digits of precision

• We can encode -7.00 as -700, -6.99 as -699, -6.98 as -698, …, 9.99 as 999, and 10.00 as 100.
• We need to choose p such that any input/intermediate/output values lie between –p/2 and p/2.
• The result needs to be scaled down to compensate for the initial scaling and any multiplications during the

computation.

• Limitations of this approach
• Only exact computations are supported: to support a larger magnitude of integers (more computations), we

need to choose a larger plaintext modulus p.
• Approximate homomorphic encryption is a much better option for this (next month’s webinar).

32

SELECTING CIPHERTEXT MODULUS REVISITED
• Typically the ciphertext modulus is determined by the multiplicative depth

• However there are applications where we have a large number of additions
• For example, when we represent a scalar multiplication as many additions to use a smaller ciphertext modulus

• In this case, a large number of additions (thousands) can be equivalent to one or more multiplications
• We can compute an effective depth to account for the extra noise introduced by many additions

• In such scenarios, BFV is the scheme to use (BGV is built around the multiplicative depth)

33

THANK YOU

https://palisade-crypto.org

ypolyakov@dualitytech.com

https://palisade-crypto.org/

	HOMOMORPHIC ENCRYPTION FOR PALISADE USERS: TUTORIAL WITH APPLICATIONS�October 2, 2020
	HOMOMORPHIC ENCRYPTION FOR PALISADE USERS
	HOMOMORPHIC ENCRYPTION FOR PALISADE USERS: TUTORIAL WITH APPLICATIONS��Integer Arithmetic
	PREREQUISITES FOR THIS TALK
	AGENDA
	Basics
	WHAT ARITHEMTIC OPERATIONS ARE SUPPORTED?
	WHAT DATA STRUCTURES ARE USED?
	COMPLETE LIST OF PRIMITIVE OPERATIONS
	Data encoding techniques
	MAIN DATA ENCODING TECHNIQUE
	OTHER (RARELY USED) DATA ENCODING TECHNIQUES
	Parameter selection
	MAIN PARAMETERS
	GUIDELINES FOR SETTING PLAINTEXT MODULUS
	GUIDELINES FOR SETTING CIPHERTEXT MODULUS
	GUIDELINES FOR SETTING CIPHERTEXT DIMENSION
	Which scheme to choose?
	BFV and BGV schemes
	BGV and BFV schemes
	Code example
	KEY CONCEPTS/CLASSES
	STEP 1 – SET CRYPTOCONTEXT
	STEP 2 – KEY GENERATION
	STEP 3 – ENCRYPTION
	STEP 4 – EVALUATION
	STEP 5 – DECRYPTION
	More advanced topics
	SELECTED HIGHER-LEVEL OPERATIONS
	MULTIPLE WAYS TO DO ADDITION
	HOW TO ENCODE NON-INTEGERS?
	SELECTING CIPHERTEXT MODULUS REVISITED
	THANK YOU

