
HOMOMORPHIC ENCRYPTION FOR PALISADE USERS:
TUTORIAL WITH APPLICATIONS

October 30, 2020

Yuriy Polyakov
contact@palisade-crypto.org

2

HOMOMORPHIC ENCRYPTION FOR PALISADE USERS

• Tutorial with applications consisting of 4 episodes (7 lectures)

• Episode 1
• Introduction to Homomorphic Encryption
• Boolean Arithmetic with Applications

• Episode 2
• Integer Arithmetic
• Applications of Homomorphic Encryption over Integers

• Episode 3
• Introduction to Multiparty Homomorphic Encryption

• Episode 4
• Approximate Number Arithmetic
• Applications of Homomorphic Encryption over Approximate Numbers

HOMOMORPHIC ENCRYPTION FOR PALISADE USERS:
TUTORIAL WITH APPLICATIONS

Introduct ion to Mult iparty Homomorphic Encryption

Yuriy Polyakov
ypolyakov@dualitytech.com

4

AGENDA

• Basics of multiparty HE
• Why multiparty HE is needed?
• Two main approaches for multiparty HE

• Threshold HE
• Key facts
• Distributed key generation
• Distributed decryption

• Example of threshold HE in PALISADE

5

Basics of
Multiparty HE
Explains limitations of single-key HE, motivation
and main approaches for multiparty HE

6

SINGLE-KEY HE WORKFLOW

Sk
Secret Key

Data Owner

Computation Host
(with a proprietary model)

Encrypted
Data

Encrypted
Result

How can this model be extended to multiple data owners that do not want to
share a secret key or data?
What if the model needs to be encrypted by model provider and sent to the
computation host? What key should the model provider use for encryption?

7

SOLUTION 1: MULTIKEY HE (MULTIPLE DATA OWNERS)

Sk1
Secret Key

Data Owner 1

Computation Host
(with a proprietary model)

Encrypted
Data

Sk2
Secret Key

Data Owner 2

Sk3
Secret Key

Data Owner 3

• Evaluation keys corresponding to different secret keys
are sent to the computation host.

• Each data owner encrypts the data with her own key.
• The encrypted result is decrypted collectively by all

parties (distributed decryption).

8

SOLUTION 1: MULTIKEY HE (ENCRYPTED MODEL)

Sk1
Secret Key

Data Owner

Computation Host
(encrypted model)

Encrypted
Data

Sk2
Secret Key

Model Owner

• Evaluation keys corresponding to different secret keys
are sent to the computation host.

• Data and model owners encrypt the data with their
own keys.

• The encrypted result is decrypted collectively by all
parties (distributed decryption).

9

SOLUTION 2: THRESHOLD HE (MULTIPLE DATA OWNERS)

Sk1
Secret Key

Pk
Joint public

key

Data Owner 1

Computation Host
(with a proprietary model)

Encrypted
Data

Data Owner 2

Data Owner 3
• The data owners interact to compute the public and

evaluation keys that correspond to Sk1 + Sk2 + Sk3.
• Each data owner encrypts the data using Pk.
• The encrypted result is decrypted collectively by all

parties (distributed decryption).

Sk2
Secret Key

Pk
Joint public

key

Sk3
Secret Key

Pk
Joint public

key

Distributed key
generation

10

SOLUTION 2: THRESHOLD HE (ENCRYPTED MODEL)

Sk1
Secret Key

Pk
Joint public

key

Data Owner 1

Computation Host
(encrypted model)

Encrypted
Data

Model Owner

• The data and model owner interact to compute the
public and evaluation keys that correspond to Sk1 + Sk2.

• Data owner encrypts the data and model owner
encrypts the model using Pk.

• The encrypted result is decrypted collectively by both
parties (distributed decryption).

Sk2
Secret Key

Pk
Joint public

key

Distributed key
generation

11

COMPARISON OF MULTIKEY AND THRESHOLD HE

Parameter Multikey HE Threshold HE

Key generation Non-interactive (asynchronous) Interactive (synchronous)

Number of parties Supports a variable number of parties,
bounding only the number of parties
involved in a specific computation

The number of parties is fixed

Decryption Interactive (all parties compute partial
decryptions and merge them)

Interactive (all parties compute partial
decryptions and merge them)

Computation runtime Grows quadratically (asymptotically;
slightly better in practice) with the
number of parties [CDKS19]

Roughly the same as in single-key HE

Evaluation and ciphertext size Linear in the number of parties
[CDKS19]

Roughly the same as in single-key HE

[CDKS19] Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song. Efficient Multi-Key Homomorphic Encryption with
Packed Ciphertexts with Application to Oblivious Neural Network Inference. CCS’19.

12

Threshold HE
Explains distributed key generation and
decryption

13

KEY FACTS ABOUT THRESHOLD HE

• All parties interact to generate joint public key and evaluation keys, using a share of the secret key held by
each party

• The underlying “full” secret key, which is the sum of secret shares, is never revealed to any party
• The joint public key is then used to perform encrypted computations using FHE (same way as in classical

single-key FHE)

• The result is decrypted using an interactive procedure where all parties collaborate to get the result in the
clear

• Supported for BGV, BFV, and CKKS schemes in PALISADE

14

DISTRIBUTED PUBLIC KEY GENERATION (2-PARTY)

• Party 1 generates a secret share Sk1 and public share Pk1 from it. A uniform ring element (polynomial) a is
used in generating Pk1.

• Party 2 generates a secret share Sk2 and public share Pk2 from it. Same uniform ring element a is used in
generating Pk2.

• Parties 1 and 2 exchange their public shares. The joint public key Pk = (a, Pk1 + Pk2) is computed.
• Pk corresponds to the “full” secret key Sk = Sk1 + Sk2. Sk is never available in the clear for any party!

• For m parties, m - 1 rounds of communication are needed using the sequential topology

15

DISTRIBUTED ROTATION KEY GENERATION (2-PARTY)

• The goal is to compute an evaluation key that switches from Roti(Sk1 + Sk2) to Sk1 + Sk2

• Party 1 generates a rotation key share (A, B1), where A is a matrix of uniform ring elements (polynomials)
and B1 corresponds to the desired rotation by i of Sk1.

• Party 2 generates a rotation key share (A, B2), where A is the same matrix of uniform ring elements
(polynomials) and B2 corresponds to the desired rotation by i of Sk2.

• Parties A and B exchange their rotation key shares. The joint rotation key Rk = (A, B1 + B2) is computed.
• Rk corresponds to the “full” secret key Sk = Sk1 + Sk2. Sk is never available in the clear for any party!

• For m parties, m - 1 rounds of communication are needed using the sequential topology.

16

DISTRIBUTED MULTIPLICATION KEY GENERATION (2-PARTY)
• The goal is to compute an evaluation key that switches from (Sk1 + Sk2)2 to Sk1 + Sk2 , i.e., an encryption of

(Sk1 + Sk2)2 under Sk1 + Sk2

• Round 1
• Party 1 generates a multiplication key share (A, B1), where A is a matrix of uniform ring elements (polynomials)

and B1 corresponds to the encryption of Sk1.

• Round 2
• Party 2 generates a multiplication key share (A, B2), where A is the same matrix of uniform ring elements

(polynomials) and B2 corresponds to the encryption of Sk2.
• Party 2 combines the multiplication shares to get (A, B = B1 + B2), which corresponds to Sk1 + Sk2
• Using (A, B), Party 2 computes new multiplication share (C2, D2), which corresponds to Sk2*(Sk1 + Sk2)
• Party 2 sends B and (C2, D2) to Party 1

• Round 3
• Using (A, B), Party 1 computes new multiplication share (C1, D1), which corresponds to Sk1*(Sk1 + Sk2)
• Party 1 computes (C = C1 + C2, D = D1 + D2), which is the desired multiplication evaluation key corresponding to

(Sk1 + Sk2)2

• Party 1 sends (C, D) to Party 2.

• For m parties, 2m – 1 rounds are needed using the sequential topology.

17

DISTRIBUTED DECRYPTION (2-PARTY)

• Ciphertext (c1, c2) is the input

• Party 1 computes a “lead” partial decryption of (c1, c2) using Sk1, c1, and c2

• Party 2 computes a partial decryption of (c1, c2) using Sk2 and c2

• Both partial decryptions are added up (fused) to get the desired decryption result

• For m parties, m - 1 rounds of communication are needed using the sequential topology

18

PALISADE Code
Example
Simple example for 2-party threshold HE

19

STEP 1 - SET CRYPTOCONTEXT
int plaintextModulus = 65537;
double sigma = 3.2;
SecurityLevel securityLevel = HEStd_128_classic;
uint32_t depth = 2;

CryptoContext<DCRTPoly> cc =
CryptoContextFactory<DCRTPoly>::genCryptoContextBFVrns(

encodingParams, securityLevel, sigma, 0, 2, 0, OPTIMIZED);

// enable features that you wish to use
cc->Enable(ENCRYPTION);
cc->Enable(SHE);
cc->Enable(MULTIPARTY);

20

STEP 2 – KEY GENERATION – ROUND 1
// Initialize Public Key Containers for two parties A and B
LPKeyPair<DCRTPoly> kp1; LPKeyPair<DCRTPoly> kp2;
LPKeyPair<DCRTPoly> kpMultiparty;

// Round 1 (party A) started

// Generate secret key for party A
kp1 = cc->KeyGen();

// Generate evalmult key part for A
auto evalMultKey = cc->KeySwitchGen(kp1.secretKey, kp1.secretKey);

// Generate evalsum key part for A
cc->EvalSumKeyGen(kp1.secretKey);
auto evalSumKeys = std::make_shared<std::map<usint, LPEvalKey<DCRTPoly>>>(

cc->GetEvalSumKeyMap(kp1.secretKey->GetKeyTag()));

// Round 1 of key generation completed.

21

STEP 3 – KEY GENERATION – ROUND 2
// Round 2 (party B) started.

// Joint public key for (s_a + s_b) is generated…

kp2 = cc->MultipartyKeyGen(kp1.publicKey);

// Generate evalmult key part for B

auto evalMultKey2 = cc->MultiKeySwitchGen(kp2.secretKey, kp2.secretKey, evalMultKey);

// Joint evaluation multiplication key for (s_a + s_b) is generated...

auto evalMultAB = cc->MultiAddEvalKeys(evalMultKey, evalMultKey2, kp2.publicKey->GetKeyTag());

// Joint evaluation multiplication key (s_a + s_b) is transformed into s_b*(s_a + s_b)...

auto evalMultBAB = cc->MultiMultEvalKey(evalMultAB, kp2.secretKey, kp2.publicKey->GetKeyTag());

// Generate evalsum key part for B

auto evalSumKeysB = cc->MultiEvalSumKeyGen(kp2.secretKey, evalSumKeys, kp2.publicKey->GetKeyTag());

// Joint evaluation summation key for (s_a + s_b) is generated... evalsum key part for B

auto evalSumKeysJoin = cc->MultiAddEvalSumKeys(evalSumKeys, evalSumKeysB, kp2.publicKey->GetKeyTag());

cc->InsertEvalSumKey(evalSumKeysJoin);

// Round 2 of key generation completed.

22

STEP 4 – KEY GENERATION – ROUND 3
// Round 3 (party A) started.

// Joint key (s_a + s_b) is transformed into s_a*(s_a + s_b)...
auto evalMultAAB = cc->MultiMultEvalKey(evalMultAB, kp1.secretKey,

kp2.publicKey->GetKeyTag());

// Computing the final evaluation multiplication key for (s_a + s_b)*(s_a + s_b)...
auto evalMultFinal = cc->MultiAddEvalMultKeys(evalMultAAB, evalMultBAB,

evalMultAB->GetKeyTag());

cc->InsertEvalMultKey({evalMultFinal});

// Round 3 of key generation completed.

23

STEP 5: ENCRYPTION
//
// Encode source data
//
std::vector<int64_t> vectorOfInts1 = {1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0};
std::vector<int64_t> vectorOfInts2 = {1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0};
std::vector<int64_t> vectorOfInts3 = {2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 0};

Plaintext plaintext1 = cc->MakePackedPlaintext(vectorOfInts1);
Plaintext plaintext2 = cc->MakePackedPlaintext(vectorOfInts2);
Plaintext plaintext3 = cc->MakePackedPlaintext(vectorOfInts3);

//
// Encryption
//
auto ciphertext1 = cc->Encrypt(kp2.publicKey, plaintext1);
auto ciphertext2 = cc->Encrypt(kp2.publicKey, plaintext2);
auto ciphertext3 = cc->Encrypt(kp2.publicKey, plaintext3);

24

STEP 6: HOMOMORPHIC COMPUTATIONS
//
// Homomorphic Operations
//

auto ciphertextAdd12 = cc->EvalAdd(ciphertext1, ciphertext2);
auto ciphertextAdd123 = cc->EvalAdd(ciphertextAdd12, ciphertext3);

auto ciphertextMult = cc->EvalMult(ciphertext1, ciphertext3);
auto ciphertextEvalSum = cc->EvalSum(ciphertext3, 1024);

25

STEP 7: DISTRIBUTED DECRYPTION

// Distributed decryption

// partial decryption by party A
auto ciphertextPartial1 = cc->MultipartyDecryptLead(kp1.secretKey, {ciphertextAdd123});

// partial decryption by party B
auto ciphertextPartial2 = cc->MultipartyDecryptMain(kp2.secretKey, {ciphertextAdd123});

vector<Ciphertext<DCRTPoly>> partialCiphertextVec;
partialCiphertextVec.push_back(ciphertextPartial1[0]);
partialCiphertextVec.push_back(ciphertextPartial2[0]);

// Two partial decryptions are combined
cc->MultipartyDecryptFusion(partialCiphertextVec, &plaintextMultipartyNew);

Source for this example: https://gitlab.com/palisade/palisade-release/-
/blob/master/src/pke/examples/threshold-fhe.cpp

26

THANK YOU

https://palisade-crypto.org

ypolyakov@dualitytech.com

https://palisade-crypto.org/

	HOMOMORPHIC ENCRYPTION FOR PALISADE USERS: TUTORIAL WITH APPLICATIONS�October 30, 2020
	HOMOMORPHIC ENCRYPTION FOR PALISADE USERS
	HOMOMORPHIC ENCRYPTION FOR PALISADE USERS: TUTORIAL WITH APPLICATIONS��Introduction to Multiparty Homomorphic Encryption
	AGENDA
	Basics of �Multiparty HE
	SINGLE-KEY HE WORKFLOW
	SOLUTION 1: MULTIKEY HE (MULTIPLE DATA OWNERS)
	SOLUTION 1: MULTIKEY HE (ENCRYPTED MODEL)
	SOLUTION 2: THRESHOLD HE (MULTIPLE DATA OWNERS)
	SOLUTION 2: THRESHOLD HE (ENCRYPTED MODEL)
	COMPARISON OF MULTIKEY AND THRESHOLD HE
	Threshold HE
	KEY FACTS ABOUT THRESHOLD HE
	DISTRIBUTED PUBLIC KEY GENERATION (2-PARTY)
	DISTRIBUTED ROTATION KEY GENERATION (2-PARTY)
	DISTRIBUTED MULTIPLICATION KEY GENERATION (2-PARTY)
	DISTRIBUTED DECRYPTION (2-PARTY)
	PALISADE Code Example
	STEP 1 - SET CRYPTOCONTEXT
	STEP 2 – KEY GENERATION – ROUND 1
	STEP 3 – KEY GENERATION – ROUND 2
	STEP 4 – KEY GENERATION – ROUND 3
	STEP 5: ENCRYPTION
	STEP 6: HOMOMORPHIC COMPUTATIONS
	STEP 7: DISTRIBUTED DECRYPTION
	THANK YOU

