
HOMOMORPHIC ENCRYPTION FOR PALISADE USERS:
TUTORIAL WITH APPLICATIONS

Homomorphic Encrypt ion Ser ia l i zat ion for Appl icat ions

Dr. David Bruce Cousins, Director Duality Labs
dcousins@dualitytech.com

2

Agenda

• The role of Serialization and Deserialization in encrypted applications
• Basic Examples from the PALISADE distribution
• Examples of Systems of Cooperating PALISADE Processes

3

The role of Serialization in
Applications

Serialization and deserialization in C++

4

Serialization in Computing
• Serialization is the process of translating a data structure or object

• into a format that can be stored or transmitted (i.e. bytes).
• and reconstructed later (possibly on another system).

• This reconstruction is known as deserialization and produces a “clone” of that
object.

• Applications of serialization include:
• Messagingtransferring data between programs on the same or different computers
• Storage saving and recalling data in databases or files.
• Other computing models  remote procedure calls (e.g. SOAP, etc), distributing objects as

components (COM, CORBA, etc.)

• It is an essential tool for building real-world systems that use PALISADE.

5

Serialization in C++ is not so easy

• C++ has no standard serialization library
• Serializing and deserializing complicated objects that use pointers is not a simple

task.
• Objects can be made up of other objects and data structures
• That data can be distributed throughout non-contiguous memory
• Pointer References are not portable, you cannot just copy pointer values into a file

• Need to gather memory blocks and re-reference the pointers locally.
• Changes in object code may require changes in serialization code

6

Example of a Complicated Data Layout

• CKKS Ciphertext Object:
• A handful integer members (to keep track of data dimensions, levels,

multiplicative depth etc.)
• Shared pointer to a vector<DCRTPoly>

• DCRTPoly handful members (dimensions, moduli) and pointers to
vector<shared_ptr<vector<uint64_t>>>

• Outer dimension is 2 or 3, inner dimension is ring_size (large)
• Shared pointer to Metadata map <string, shared_ptr<Metadata>>

• Metadata arbitrary parameters for application-level code

• Very complicated to serialize, you need to keep track of all these
pointers to pointers to pointers….

• Fortunately, there are libraries that take most of the work out of this…

7

PALISADE uses Cereal for Serialization
• C++ header only library for serialization
• https://uscilab.github.io/cereal/

• Supports STL objects and shared_ptr, unique_ptr
• Serializes to JSON (human readable) or binary (smallest size)
• Customizable to support PALISADE objects.

• We won’t cover the inner details of Cereal
• Generally, PALISADE needs to add a pair of serialization/deserialization

functions for complicated objects like CryptoContext and Ciphertext
• Simple functions that allow Cereal to parse complex objects during compile time
• Figures out serialization and deserialization routines automagically.
• The penalty is those functions take a LONG time to compile – so separate functions

that use serialization into a separate compilation module if you can.

https://uscilab.github.io/cereal/

8

Basic Examples from the
PALISADE distribution

Serialization and deserialization functions

9

Example Code for Serialization in PALISADE

• Serialization is supported in all public key encryption schemes
• Functional unit tests (these can be hard to read):

• src/core/unittest/UnitTestSerialize.cpp
• Uses generic Serial::Serialize() and Serial::Deserialize() on various basic PALISADE data types.

• src/pke/unittest/UnitTestSerialize*.cpp
• BFV, BFVrns, BFVrnsB, BGVrns, CKKS, NULL, StSt
• Uses Serial::Serialize() / Serial::Deserialize(), and additional specific functions to serialize

complicated objects from an active CryptoContext

• Examples in pke/examples (often easier to understand):
• Single thread programs that serialize and save CryptoContext, key and ciphertext

objects to disk, then load them into new variables.
• Simple-integers-serial.cpp (BFVrns)
• Simple-integers-serial-bgvrns.cpp
• Simple-real-numbers-serial.cpp (CKKS)

10

Examples of Systems of
Cooperating PALISADE
Processes

Serialization and deserialization between multiple
heavyweight processes

11

Passing Objects Between Multiple
Heavyweight Processes is Complicated
• A system composed of cooperating processes:

• needs to pass serialized objects to each other through files, sockets or shared
memory.

• needs mechanisms to synchronize in addition to passing serialized data, such
as file locks, mutexes or semaphores.

• These processes do not share the same memory map!
• Unlike threads

• We’ve built a small repository to demonstrate sample systems
• https://gitlab.com/palisade/palisade-serial-examples
• Currently has one example but we will be constantly adding more
• Separate repo so we can use Boost interprocess mechanisms

https://gitlab.com/palisade/palisade-serial-examples

12

Client-Server for distributed secure computation
• src/real-server CKKS-based distributed encrypted computation

real-client.cpp processes
secure data remotely

real-server.cpp represents secure
repository of private data

Builds and serializes the CryptoContext,
public key and various computation keys
to files

Receives data request, encrypts
requested data and serializes it to files

Receives encrypted result

Decrypts and verifies result

Builds CryptoContext and keys from
deserialized files

Sends data request

Computes on encrypted data and
encrypts more data with public key

Sends resulting ciphertext to Server

Receives encrypted ciphertext

Object transfer is done with file I/O. Synchronization done with
Boost named_mutex prevents files from being read before
writing is completed by other process.

tim
e

13

Server: Sending the CryptoContext and Keys
• For flexibility, serializing a CryptoContext does not share everything

within that context (for example, keys)
• The server must serialize multiple components
• The client must deserialize these and may also regenerate other components

• Most objects can be serialized directly with SerializeToFile()
• Server::writeData() serializes the following components:

• CryptoContext with Serial::SerializeToFile()
• publicKey with Serial::SerializeToFile()
• EvalMultKey/Relinearization key with CryptoContext::SerializeEvalMultKey()
• RotationKeys with CryptoContext:: SerializeEvalAutomorphismKey

14

Server: Notes on Sending Keys
• EvalMult and rotation (automorphism) keys are handled with special

functions because there are several objects of each type associated
with the CryptoContext, and their content is application dependent.

• For example, there is one key for each index of rotation used by the application

• These functions serialize to std::ostream, so you need to open and
close ofstream in the code.

• Note that EvalSumKey is not used in this example but may be required
in your application.

15

Client: Receiving and Reconstructing
CryptoContext and Keys
• The details are in real_client.cpp receiveCCAndKeys()
• Several key steps are needed in addition to transferring objects:
• We must clear out any PALISADE data objects when we deserialize and

assemble the client CryptoContext.
• Use CryptoContextFactory<DCRTPoly>::ReleaseAllContexts() before creating a new CC.
• Load client_CC, (our CryptoContext)  Serial::DeserializeFromFile())

• Clearing the keys is important before loading them
• clientCC->ClearEvalMultKeys()
• clientCC->ClearEvalAutomorphismKeys()

• Load keys
• publicKeySerial::DeserializeFromFile())
• evalMultKeyclient_CC->DeserializeEvalMultKey()
• Rotation keys clientCC->DeserializeEvalAutomorphismKey()
• Eval sum keys would also need to be loaded if used.

16

Sending/Receiving Ciphertexts

• Server sends Ciphertexts to client with Serial::SerializeToFile()
• Client receives Ciphertexts with Serial::DeserializeFromFile()
• We could also use Serial::Serialize() / Serial::Deserialize() to give us

more flexibility in building systems
• This lets us Serialize to any ostream object

• File  ofstream
• Local memory  stringstream
• Sockets  Boost socket stream
• Shared memory  Boost interprocess shared memory.

17

Object sizes in this example
• FHE objects are large

• Their size is related to security requirements, and multiplicative depth
desired.

• Only use JSON when you must (Like for human debugging)

ciphertext Binary size JSON

CryptoContext 3.1 K Bytes 66 K Bytes

ciphertext 5.6 M Bytes 44 M Bytes

Public key 5.6 M bytes 44 M Bytes

EvalMult keys 23 M Bytes 226 M Bytes

Rotation keys 91 M Bytes 1.1 G Bytes

18

Running the Example Code
• Clone, build and install PALISADE from the development repo
• Clone the PALISADE/serial-examples repo. Detailed build instructions

are found in README.md

19

Exploring Further

• There is a complicated example of three heavyweight processes
participating in proxy-key re-encryption

• PALISADE src/pke/examples/pre_server uses simple file-based synchronization for
ultra portability

• A trusted Server builds CryptoContext and shares it with Alice and Bob
• Alice send her decryption key to the server
• Bob sends his public key to server, who generates a re-encryption key from Alice’s

and Bob’s keys, and sends it to Bob
• Alice can then send her encrypted data directly to Bob, who can decrypt it with a

combination of the re-encryption key and his decryption key.
• Note Alice’s data could have been stored somewhere and later read by Bob.
• Bob does not need Alice’s decryption key!

• We will add this and other examples of cooperating-process PALISADE
applications to the serial-examples repository

20

Any Questions?Thank you for attending!

	HOMOMORPHIC ENCRYPTION FOR PALISADE USERS: TUTORIAL WITH APPLICATIONS��Homomorphic Encryption Serialization for Applications
	Agenda
	The role of Serialization in Applications
	Serialization in Computing
	Serialization in C++ is not so easy
	Example of a Complicated Data Layout
	PALISADE uses Cereal for Serialization
	Basic Examples from the PALISADE distribution
	Example Code for Serialization in PALISADE
	Examples of Systems of Cooperating PALISADE Processes
	Passing Objects Between Multiple Heavyweight Processes is Complicated
	Client-Server for distributed secure computation
	Server: Sending the CryptoContext and Keys
	Server: Notes on Sending Keys
	Client: Receiving and Reconstructing CryptoContext and Keys
	Sending/Receiving Ciphertexts
	Object sizes in this example
	Running the Example Code
	Exploring Further
	Any Questions?

