
OVERVIEW OF ARCHITECTURE, 
CAPABILITIES, AND DOCUMENTATION

Yuriy Polyakov
ypolyakov@dualitytech.com



2

MOTIVATION FOR PALISADE ARCHITECTURE

• Extendible framework and library for homomorphic encryption and lattice cryptography
• Ex: multiple protocols, schemes and lattice / math back-ends.
• Low-level plugin optimization can be modularized/“outsourced”

• Develop crypto APIs for application developers
• API should be scheme-agnostic

• Good software engineering with focus on usability
• Standards-based design and style
• Unit tests and benchmarking environment
• Documentation and sample code



3

MODULAR/LAYERED ARCHITECTURE



4

MATHEMATICAL BACKENDS

• Modular vector and integer arithmetic is supported by multiple mathematical 
“backends”

• The backends can be switched using compile-level flags

• Multiprecision mathematical backends
• Fixed-size array of native integers (default)
• Dynamic-size array of native integers
• NTL implementation

• Native integer backends
• 64-bit integers with 128-bit integer support (default)
• 64-bit integers without 128-bit integer support
• 32-bit integers with 64-bit integer support



5

SPECIFICATIONS

• PALISADE is a multi-threaded library written in C++11
• Supported operating systems

• Linux/Unix
• Windows (MinGW)
• macOS

• Supported compilers
• g++ v6.1 and later
• clang (llvm) v6.0 and later

• CMake is used for building PALISADE
• PALISADE is distributed under the BSD 2-clause license
• The default install of PALISADE has no external dependencies

• The users can optionally use GMP/NTL (for a multiprecision math backend) and TCMAlloc (for multi-threaded 
block allocation) if desired



6

AVAILABILITY

• PALISADE stable release (https://gitlab.com/palisade/palisade-release)
• Includes the latest stable release of PALISADE (currently v1.9.2) and prior stable releases

• PALISADE preview release (https://gitlab.com/palisade/palisade-development)
• Includes the latest preview release of PALISADE (currently v1.10.2)
• A preview release gets converted to a stable release once all known critical bugs reported by the PALISADE 

community are fixed
• The “master” branch also houses experimental (research) capabilities that do not get included in releases

• PALISADE Python3 port (https://gitlab.com/palisade/palisade-python-demo)
• An example showing how to use PALISADE in Python

• FreeBSD port (https://www.freshports.org/security/palisade)
• A PALISADE package for FreeBSD users

https://gitlab.com/palisade/palisade-release
https://gitlab.com/palisade/palisade-development
https://gitlab.com/palisade/palisade-python-demo
https://www.freshports.org/security/palisade


7

CURRENT CAPABILITIES

• Fully Homomorphic Encryption (FHE) – all FHE schemes use the parameters suggested in 
the HomomorphicEncryption.org security standard (https://eprint.iacr.org/2019/939)

• Brakerski/Fan-Vercauteren (BFV) scheme for integer arithmetic
• Brakerski-Gentry-Vaikuntanathan (BGV) scheme for integer arithmetic
• Cheon-Kim-Kim-Song (CKKS) scheme for real-number arithmetic
• Ducas-Micciancio (FHEW) and Chillotti-Gama-Georgieva-Izabachene (TFHE) schemes for Boolean 

circuit evaluation
• Stehle-Steinfeld scheme for limited integer arithmetic

• Multi-Party Extensions of FHE (to support multi-key FHE) 
• Threshold FHE for BGV, BFV, and CKKS schemes
• Proxy Re-Encryption for BGV, BFV, and CKKS schemes

https://eprint.iacr.org/2019/939


8

CURRENT CAPABILITIES (CONT’D)

• Efficient lattice trapdoor toolkit with the following applications
• Digital signature
• Identity-based encryption
• Ciphertext-policy attribute-based encryption

• Experimental (research) capabilities
• Key-policy attribute-based encryption
• Program obfuscation



9

MORE DETAILS ABOUT FHE SCHEMES: BGV, BFV & CKKS
• All three schemes are implemented in full RNS (a.k.a double CRT) for efficiency

• All known key switching methods are supported, including 
• BV “digit” decomposition
• hybrid (using an auxiliary RNS basis)
• GHS (special case of hybrid with a “large” auxiliary modulus)
• “SEAL” (special case of hybrid with a “small” auxiliary modulus)

• All RNS implementations are designed to be as usable as possible
• Maintenance operations, e.g., rescaling in CKKS and modulus switching in BGV, are done 

automatically
• Same-size small primes are used for RNS, e.g., BGV in PALISADE is as easy to use as BFV
• Parameters are chosen before the computation, and no dynamic noise estimation is needed

• CKKS in RNS is designed to minimize the approximation error
• Selected ideas were presented in our Simons Institute lattice workshop talk: 

https://www.youtube.com/watch?v=ZtJc6B7C8Pg
• Further details on the variants of CKKS and BGV implemented in PALISADE to appear in IACR 

ePrint in August/September

https://www.youtube.com/watch?v=ZtJc6B7C8Pg


10

MORE DETAILS ABOUT FHE SCHEMES: FHEW & TFHE

• PALISADE provides an HE-standard-compliant implementation of FHEW and TFHE 
for arbitrary Boolean circuit evaluation

• Both use uniform ternary secrets
• Runtime for FHEW and TFHE based on ternary secrets is roughly the same
• For ternary secrets, the bootstrapping key is smaller for TFHE 
• Main difference between FHEW and TFHE is in the bootstrapping procedure used

• Current bootstrapping runtime for a 128-bit security setting on a commodity 
workstation (w/o AVX extensions): ~90 ms

• More details on the FHEW and TFHE implementation in PALISADE are presented in 
https://eprint.iacr.org/2020/086

https://eprint.iacr.org/2020/086


11

FUNCTIONALITY COMPARISON MATRIX

Library/
Scheme or Extension

BGV BFV CKKS FHEW TFHE Threshold 
FHE (MP)

Proxy Re-
Encryption

(MP)

FHEW ✔

HEAAN/HEAAN-RNS ✔

HELib ✔ ✔

Lattigo ✔ ✔ ✔

PALISADE ✔ ✔ ✔ ✔ ✔ ✔ ✔

SEAL ✔ ✔

TFHE ✔



Directory Structure

Directory Description

benchmark
Code for benchmarking PALISADE library 
components, using the Google Benchmark 
framework

build Binaries and build scripts (this folder is 
created by the user)

doc
Documentation of library components, 
including doxygen documentation 
generated by the make process.

src
Library source code. Each subcomponent 
has four or five subdirectories: include, lib, 
unittest , examples, and optionally extras

third-party

Code for distributions from third parties 
(includes NTL/GMP + git submodules for 
tcmalloc, cereal, google test, and google 
benchmark)

test Google unit test code



13

DOCUMENTATION WALKTHROUGH

The Wiki (https://gitlab.com/palisade/palisade-development/-/wikis/home) is the 
main documentation source providing links for both beginners and advanced 
PALISADE users
• Getting Started with PALISADE

• How to build PALISADE and customize it using CMake flags
• How to include PALISADE in your own projects
• Code examples for integer and real-number arithmetic, and Boolean circuits

• More advanced documentation
• PALISADE user manual
• PALISADE API (generated using doxygen)
• Release notes
• Publications describing scheme implementations in PALISADE

• Documentation for PALISADE contributors

https://gitlab.com/palisade/palisade-development/-/wikis/home


14

HOW TO REQUEST FEATURES OR REPORT BUGS

• We use the Gitlab issue tracking system to track user requests and bugs: 
https://gitlab.com/palisade/palisade-development/-/issues

• Please provide as much information as possible when reporting a bug, e.g., the build 
error console output, runtime error console output, version/commit of PALISADE, 
environment where PALISADE is run/built.

• Issues are then labeled, e.g., as a “Minor Bug”, and assigned to milestones
• Milestones are used to track issues for specific releases

https://gitlab.com/palisade/palisade-development/-/issues


15

THANK YOU

https://palisade-crypto.org

contact@palisade-crypto.org

https://palisade-crypto.org/

	OVERVIEW OF ARCHITECTURE, CAPABILITIES, AND DOCUMENTATION
	MOTIVATION FOR PALISADE ARCHITECTURE
	MODULAR/LAYERED ARCHITECTURE
	MATHEMATICAL BACKENDS
	SPECIFICATIONS
	AVAILABILITY
	CURRENT CAPABILITIES
	CURRENT CAPABILITIES (CONT’D)
	MORE DETAILS ABOUT FHE SCHEMES: BGV, BFV & CKKS
	MORE DETAILS ABOUT FHE SCHEMES: FHEW & TFHE
	FUNCTIONALITY COMPARISON MATRIX
	Directory Structure��
	DOCUMENTATION WALKTHROUGH
	HOW TO REQUEST FEATURES OR REPORT BUGS
	THANK YOU

