
HOMOMOPHIC ENCRYPTION FOR PALISADE USERS:
TUTORIAL WITH APPLICATIONS

Boolean Arithmetic with Applicat ions

Dr. David Bruce Cousins, Director Duality Labs
dcousins@dualiltytech.com

2

AGENDA

• Boolean Algebra/Logic Review and Circuits
• Basic Examples from PALISADE
• Simple Circuit Examples Using the PALISADE Encrypted Circuit Emulator
• Additional Circuit Examples

3

Boolean Logic

A quick refresher

4

Boolean Algebra
• The basis of all digital logic
• Many equivalent representations:
 Circuits of Gates
 Logic Equations
 Truth tables

 All are equivalent!
 Any logic circuit can be
manipulated into many
different forms.
 Minimize # gates
 Minimize depth
 Use particular gate types

Thanks to https://www..secs.oakland.edu/~polis/Lectures/EGR240 D5.1 BasicLogicGates.ppt

Z = X & Y

Z = X | Y

XOR

X
Y Z

Z = X ^ Y

ANDNOT

X Z

Z = !X

OR

X

Y
Z

X

Y
Z

Other gate combinations are easily built from these

X Y Z
0 0 0
0 1 1
1 0 1
1 1 0

XOR

5

Representing Systems of Logic Gates

• Circuit diagrams / Schematics (gates and wires)
• Net lists (BLIF, EDL, Bristol Format) not very readable
• Hardware Design Languages (VHDL, Verilog, System C)
• Other..

• PALISADE lets you connect gates together via C++
• Good for simple systems
• PALISADE Encrypted Circuit Emulator lets you script your own circuits,

and reads in some net list formats
• Good for circuits with 1000’s of gates

6

Basic Examples

From the PALISADE distribution

77

The “cost” of Encrypted Logic
• Memory (32 bit implementation):

• AP (STD128): Classical FHEW
• Bootstrapping key: 1152 MB, Key switching key: 300 MB

• GINX (STD128): TFHE
• Bootstrapping key: 64 MB, Key switching key: 300 MB

• Note that the key switching key size can be reduced if desired (it is a controllable
parameter).

• Each encrypted bit takes ~2KB storage

88

The “cost” of Encrypted Logic
• Execution time

• Executing NOT is fast (100 nsec), since no bootstrapping is performed
• Executing AND, OR has one bootstrap performed

• 107 msec / thread (AP STD128)
• 143 msec / thread (GINX STD128)

• Two options for XOR:
• XOR - 3x slower than AND (three bootstraps, gives same failure probability as

AND <2-32)
• XOR_FAST - = AND but higher failure probability <2-15

• For more details, see https://eprint.iacr.org/2020/086
• The execution time of an encrypted circuit is strictly a function of the gate time

• Manipulating circuit to minimize # of gates (other than NOT) gives fastest runtime

9

C++ Examples provided in the PALISADE release

• Sample executables are in ${root}/build/bin/examples/binfhe
• C++ source code for these examples are in ${root}/binfhe/examples

• boolean : simple collection of gates using the GINX method.
• boolean-ap : same as above except using AP method.
• boolean-truth-tables : example showing basic gate output for all input

combinations
• boolean-serial-json : how to serialize (save to disk) the components of a binfhe

crypto-system (various keys and ciphertext)
• boolean-serial-binary : same as above though with binary vs json storage (much

smaller files)
• Source code for sample benchmarks are in ${root}/benchmark/src/binfhe*.cpp

10

Listing of boolean.cpp
#include "binfhecontext.h"
using namespace lbcrypto;
using namespace std;
int main() {

// Step 1: Set CryptoContext
auto cc = BinFHEContext();
cc.GenerateBinFHEContext(STD128, AP); //set 128 bits of security, AP

// Step 2: Key Generation
auto sk = cc.KeyGen(); // Generate the secret key
cc.BTKeyGen(sk); // Generate the bootstrapping keys

// Step 3: Encryption
// Encrypt two ciphertexts representing Boolean True (1)
auto ct1 = cc.Encrypt(sk, 1);
auto ct2 = cc.Encrypt(sk, 1);

// Step 4: Evaluation
auto ctAND1 = cc.EvalBinGate(AND, ct1, ct2); // Compute (1 AND 1) = 1
auto ct2Not = cc.EvalNOT(ct2); // Compute (NOT 1) = 0
auto ctAND2 = cc.EvalBinGate(AND, ct2Not, ct1); // Compute (1 AND (NOT 1)) = 0
// Computes OR of the results in ctAND1 and ctAND2 = 1
auto ctResult = cc.EvalBinGate(OR, ctAND1, ctAND2);

// Step 5: Decryption
LWEPlaintext result;
cc.Decrypt(sk, ctResult, &result);

}

ctResult
ct1

Each “wire” is a ciphertext
Each “gate” is a function call
Inputs are “encrypted”
Outputs are “decrypted”

ct2

ctNot

ctAND1

ctAND2

Equivalent Circuit Representation

11

Simple Circuit
Examples

From the PALISADE Encrypted Circuit Emulation
repository

12

PALISADE Encrypted Circuit Emulator

• GitLab repo: https://gitlab.com/palisade/palisade-encrypted-circuit-
emulator

• Build instructions are in README.md, requires you to install PALISADE
• Contains prototype C++ code to
 Parse circuit representation input files
 Analyze and Assemble them into an intermediate form for circuit

emulation (*.out file)
 Run C++ test fixtures to generate input and test output for various circuits
 Executes resulting logic circuit in plaintext and encrypted form – uses

Open MP to evaluate encrypted gates in parallel on all available threads.
 Stores minimum number of circuit ciphertexts

 once all gates have fired that are fed by a node, it is deleted.

https://gitlab.com/palisade/palisade-encrypted-circuit-emulator

13

PALISADE Encrypted Circuit Emulator
• Current limitations (Aug 2020)
 Input currently limited to “Bristol Format Circuits”

https://homes.esat.kuleuven.be/~nsmart/MPC/old-circuits.html
 Format is primarily used for Garbled Circuit R&D
 As a result it has limited I/O, limited gate types, and these circuits prefer XOR over all

other gates – also not the smallest circuits possible but are a good representation.
 Intermediate file format (*.out) is a bit primitive and fiddly, but you can use it to write

your own circuits
 Circuit management / scheduling code is done brute force
 Executes encrypted gates on parallel threads, minimize circuit ciphertext
 Overhead high for small circuits, negligible (2%) on large circuits.

https://homes.esat.kuleuven.be/%7Ensmart/MPC/old-circuits.html

14

PALISADE Encrypted Circuit Emulator

• Planned extensions
 Add New Bristol Fashion Circuit format
 Improve I/O definitions to allow more complex circuits
 Optimize circuit management and internal netlist generation (currently

takes a long time for large circuits)
 Follow improvements in PALISADE binfhe performance as they get

released

15

Example Simple Circuits

• There are two simple circuits that are provided in the distribution examples
folder that we will review in this session

• Simple Circuits - examples/simple_ckts/*
 Hand assembled circuits that demonstrate capability with minimal run time

 adder_2bit - 4 bit input, three bit output adder with carry
 parity - 8 bit parity generator/checker

 We will next review the process of building the description by hand

16

adder_2bit circuit

• Start with basic circuit

•
•
•
•
•
•

https://i.stack.imgur.com/TpBpr.gif

Q = a + b
CO is carry out

17

adder_2bit circuit

• Start with basic circuit
• Label nodes

• Input nodes need to be
numbered sequentially

• Nodes need to be R# starting
from zero, but can be any order

•
•
•
•
•

https://i.stack.imgur.com/TpBpr.gif

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9 R10

18

adder_2bit circuit

• Start with basic circuit
• Label nodes

• Input nodes need to be
numbered sequentially

• Nodes need to be R# starting
from zero, but can be any order

• Label Inputs and Outputs
• Input registers are numbered

In1,0 is bit 0 of first input
In2,1 is bit 1 of second input
there can be one or two inputs

• Outputs bits are labeled Out0,
Out1, etc. -- there is only one output register

• These constraints are based on historical requirements of the
Bristol circuit format and will be lifted in future revisions.

https://i.stack.imgur.com/TpBpr.gif

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9 R10

In1,0

In1,1

In2,0

In2,1

Out0

Out1

Out2

19

Resulting adder_2bit assembly code:

number input1 bits 2
number input2 bits 2
number output1 bits 3
Do not edit the top 3 lines!
2 bit adder
Q = a + b
CO is carry out
#
inputs:
In0,0 In0,1 are a0 , b0
In1,0 In1,1 are a1 , b1
outputs
Out0 is Q0, Out1 is Q1, Out2 is CO

R0 = LOAD(In1,0)
R1 = LOAD(In1,1)
R2 = LOAD(In2,0)
R3 = LOAD(In2,1)

R4 = XOR(R0, R2)
R5 = AND(R0, R2)
Out0 = STORE(R4)

R6 = XOR(R1, R3)
R7 = AND(R1, R3)
R8 = XOR(R5, R6)
Out1 = STORE(R8)

R9 = AND(R5, R6)
R10 = OR(R9, R7)
Out2 = STORE(R10)

The first 3 lines need to list the
Number of bits for inputs and outputs
Comment lines have # in column 1

LOAD and STORE are used to
Indicate inputs and outputs into the
Circuit (they trigger encrypt/decrypt)

Use this format, no extra spaces

20

adder_2bit sample output
• Program name bin/TB_adder_2bit
• Size of input and output registers.
• Number of internal nodes
• Security parameters used
• Test input and correct output
• Plaintext circuit runtime 1 msec
•

• Circuit size
• Encrypted circuit run time

2113 msec, Efficiency 99.9053%
• Circuit verified correctly

21

Parity generator circuit

8 bits for input
(9th bit can be
set to 0 or
used for chaining
multiple circuits
together for wider
words)

2 bits output
appropriate bit signals
even or odd parity

Out0
(Even)

Out1
(Odd)

In1,0

In1,8

In1,1

.

.

.

22

Parity assembly code: examples/simple_ckts/parity

number input1 bits 9
number input2 bits 0
number output1 bits 2
Do not edit the top 3 lines!
parity generator/checker 8 bits
inputs:
In0,0 .. In0,7 are 8 bits input with
In0,8 as 0 for input (or cascade)
outputs
Out0 is even Out1 is odd

R0 = LOAD(In1,0)
R1 = LOAD(In1,1)
R2 = LOAD(In1,2)
R3 = LOAD(In1,3)
R4 = LOAD(In1,4)
R5 = LOAD(In1,5)
R6 = LOAD(In1,6)
R7 = LOAD(In1,7)
R8 = LOAD(In1,8)

R9 = NOT(R0)
R10 = NOT(R1)
R11 = NOT(R2)
R12 = NOT(R3)
R13 = NOT(R4)
R14 = NOT(R5)
R15 = NOT(R6)
R16 = NOT(R7)
R17 = NOT(R8)

R18 = XOR(R9, R10)
R19 = XOR(R11, R12)

R20 = XOR(R13, R14)
R21 = XOR(R15, R16)

R22 = XOR(R18, R19)
R23 = XOR(R20, R21)

R24 = XOR(R22, R23)

R25 = XOR(R24, R17)
R26 = NOT(R25)

Out0 = STORE(R25)
Out1 = STORE(R26)

23

Parity test: examples/simple_ckts/parity

• Test program performs the following operations, using the same circuit as both a parity generator and
parity checker. Note all data is encrypted. Decrypting the output determines the parity of the encrypted
word.

Parity
circuit

Parity
circuit

Generator

Checker

Even

If Odd != 1 then error!
D0-D7

0 9 bit odd parity data wordD8

D0-D8

24

Parity sample output

• Program name bin/TB_parity

• Circuit size 10 NOT, 8 XOR
• Encrypted circuit run time

3648 msec, Efficiency 99.9%
• Circuit verified correctly

25

Additional Complex
Circuit Examples

From the PALISADE Encrypted Circuit Emulation
repository

26

Complex Circuit Examples for Further Exploration
Currently the repository has examples taken from
https://homes.esat.kuleuven.be/~nsmart/MPC/old-circuits.html

• The arithmetic examples are relatively quick, crypto examples have >10K
gates so can take a long time to process and run
Arithmetic

Function File # ANDs # XORs # NOTs # ORs

32-bit Adder TB_adders 127 61 187 0

64-bit Adder TB_adders 256 115 379 0

32x32-bit Multiplier TB_multipliers 5926 1069 5379 0

32-bit comparisons TB_comparators 150 0 150/162 0

Crypto

Md5 hash TB_crypto 29084 14150 34627 0

SHA-256 TB_crypto 90825 42029 103258 0

AES 128 (No Key Expansion) TB_aes 6800 25124 1692 0

AES 128 (Key Expanded) TB_aes 5440 20325 1927 0

https://homes.esat.kuleuven.be/%7Ensmart/MPC/old-circuits.html

27

THANK YOU

https://palisade-crypto.org

dcousins@dualitytech.com

https://palisade-crypto.org/

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27

