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AGENDA

• Boolean Algebra/Logic Review and Circuits
• Basic Examples from PALISADE
• Simple Circuit Examples Using the PALISADE Encrypted Circuit Emulator
• Additional Circuit Examples
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Boolean Logic

A quick refresher
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Boolean Algebra
• The basis of all digital logic
• Many equivalent representations:
 Circuits of Gates
 Logic Equations
 Truth tables

 All are equivalent!
 Any logic circuit can be
manipulated into many 
different forms.
 Minimize # gates
 Minimize depth
 Use particular gate types

Thanks to https://www..secs.oakland.edu/~polis/Lectures/EGR240 D5.1 BasicLogicGates.ppt

Z = X & Y

Z = X | Y

XOR

X
Y Z

Z = X ^ Y

ANDNOT

X Z

Z = !X

OR

X

Y
Z

X

Y
Z

Other gate combinations are easily built from these
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0 1 1
1 0 1
1 1 0

XOR
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Representing Systems of Logic Gates

• Circuit diagrams / Schematics (gates and wires)
• Net lists (BLIF, EDL, Bristol Format) not very readable
• Hardware Design Languages (VHDL, Verilog, System C) 
• Other.. 

• PALISADE lets you connect gates together via C++
• Good for simple systems
• PALISADE Encrypted Circuit Emulator lets you script your own circuits, 

and reads in some net list formats
• Good for circuits with 1000’s of gates
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Basic Examples

From the PALISADE distribution
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The “cost” of Encrypted Logic
• Memory (32 bit implementation):  

• AP (STD128):  Classical FHEW 
• Bootstrapping key: 1152 MB,  Key switching key: 300 MB

• GINX (STD128):  TFHE 
• Bootstrapping key: 64 MB,  Key switching key: 300 MB 

• Note that the key switching key size can be reduced if desired (it is a controllable 
parameter).

• Each encrypted bit takes ~2KB storage
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The “cost” of Encrypted Logic
• Execution time

• Executing NOT is fast (100 nsec), since no bootstrapping is performed
• Executing AND, OR has one bootstrap performed

• 107 msec / thread (AP STD128) 
• 143 msec / thread (GINX STD128)

• Two options for XOR:
• XOR - 3x slower than AND (three bootstraps, gives same failure probability as 

AND <2-32)
• XOR_FAST - = AND but higher failure probability <2-15

• For more details, see https://eprint.iacr.org/2020/086
• The execution time of an encrypted circuit is strictly a function of the gate time

• Manipulating circuit to minimize # of gates (other than NOT) gives fastest runtime
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C++ Examples provided in the PALISADE release

• Sample executables are in ${root}/build/bin/examples/binfhe
• C++ source code for these examples are in ${root}/binfhe/examples

• boolean : simple collection of gates using the GINX method.      
• boolean-ap : same as above except using AP method.
• boolean-truth-tables : example showing basic gate output for all input 

combinations
• boolean-serial-json : how to serialize (save to disk) the components of a binfhe

crypto-system (various keys and ciphertext)
• boolean-serial-binary : same as above though with binary vs json storage (much 

smaller files)
• Source code for sample benchmarks are in ${root}/benchmark/src/binfhe*.cpp
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Listing of boolean.cpp
#include "binfhecontext.h"
using namespace lbcrypto;
using namespace std;
int main() {

// Step 1: Set CryptoContext
auto cc = BinFHEContext();                     
cc.GenerateBinFHEContext(STD128, AP);   //set 128 bits of security,  AP

// Step 2: Key Generation 
auto sk = cc.KeyGen(); // Generate the secret key
cc.BTKeyGen(sk);         // Generate the bootstrapping keys 

// Step 3: Encryption
// Encrypt two ciphertexts representing Boolean True (1)
auto ct1 = cc.Encrypt(sk, 1);
auto ct2 = cc.Encrypt(sk, 1);

// Step 4: Evaluation
auto ctAND1 = cc.EvalBinGate(AND, ct1, ct2);         // Compute (1 AND 1) = 1  
auto ct2Not = cc.EvalNOT(ct2);   // Compute (NOT 1) = 0
auto ctAND2 = cc.EvalBinGate(AND, ct2Not, ct1); // Compute (1 AND (NOT 1)) = 0
// Computes OR of the results in ctAND1 and ctAND2 = 1
auto ctResult = cc.EvalBinGate(OR, ctAND1, ctAND2);

// Step 5: Decryption
LWEPlaintext result;
cc.Decrypt(sk, ctResult, &result);

}

ctResult
ct1

Each “wire” is a ciphertext
Each “gate” is a function call
Inputs are “encrypted”
Outputs are “decrypted”

ct2

ctNot

ctAND1

ctAND2

Equivalent Circuit Representation
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Simple Circuit 
Examples

From the PALISADE Encrypted Circuit Emulation 
repository



12

PALISADE Encrypted Circuit Emulator

• GitLab repo: https://gitlab.com/palisade/palisade-encrypted-circuit-
emulator

• Build instructions are in README.md, requires you to install PALISADE
• Contains prototype C++ code to 
 Parse circuit representation input files
 Analyze and Assemble them into an intermediate form for circuit 

emulation (*.out file)
 Run C++ test fixtures to generate input and test output for various circuits
 Executes resulting logic circuit in plaintext and encrypted form – uses 

Open MP to evaluate encrypted gates in parallel on all available threads. 
 Stores minimum number of circuit ciphertexts

 once all gates have fired that are fed by a node, it is deleted.

https://gitlab.com/palisade/palisade-encrypted-circuit-emulator
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PALISADE Encrypted Circuit Emulator
• Current limitations (Aug 2020)
 Input currently limited to “Bristol Format Circuits” 

https://homes.esat.kuleuven.be/~nsmart/MPC/old-circuits.html
 Format is primarily used for Garbled Circuit R&D
 As a result it has limited I/O, limited gate types, and these circuits prefer XOR over all 

other gates – also not the smallest circuits possible but are a good representation.
 Intermediate file format (*.out) is a bit primitive and fiddly, but you can use it to write 

your own circuits
 Circuit management / scheduling code is done brute force
 Executes encrypted gates on parallel threads, minimize circuit ciphertext
 Overhead high for small circuits, negligible (2%) on large circuits.

https://homes.esat.kuleuven.be/%7Ensmart/MPC/old-circuits.html
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PALISADE Encrypted Circuit Emulator

• Planned extensions
 Add New Bristol Fashion Circuit format
 Improve I/O definitions to allow more complex circuits
 Optimize circuit management and internal netlist generation  (currently 

takes a long time for large circuits)
 Follow improvements in PALISADE binfhe performance as they get 

released



15

Example Simple Circuits

• There are two simple circuits that are provided in the distribution examples 
folder that we will review in this session

• Simple Circuits - examples/simple_ckts/* 
 Hand assembled circuits that demonstrate capability with minimal run time

 adder_2bit - 4 bit input, three bit output adder with carry
 parity - 8 bit parity generator/checker

 We will next review the process of building the description by hand
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adder_2bit circuit 

• Start with basic circuit 

•
•
•
•
•
•

https://i.stack.imgur.com/TpBpr.gif

Q = a + b
CO is carry out
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adder_2bit circuit 

• Start with basic circuit 
• Label nodes

• Input nodes need to be
numbered sequentially

• Nodes need to be R# starting
from zero, but can be any order

•
•
•
•
•

https://i.stack.imgur.com/TpBpr.gif

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9 R10
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adder_2bit circuit 

• Start with basic circuit 
• Label nodes

• Input nodes need to be
numbered sequentially

• Nodes need to be R# starting
from zero, but can be any order

• Label Inputs and Outputs
• Input registers are numbered

In1,0 is bit 0 of first input
In2,1 is bit 1 of second input
there can be one or two inputs

• Outputs bits are labeled Out0,
Out1, etc.  -- there is only one output register

• These constraints are based on historical requirements of the 
Bristol circuit format and will be lifted in future revisions.

https://i.stack.imgur.com/TpBpr.gif

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9 R10

In1,0

In1,1

In2,0

In2,1

Out0

Out1

Out2
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Resulting adder_2bit assembly code:  

# number input1 bits 2
# number input2 bits 2
# number output1 bits 3
# Do not edit the top 3 lines!
# 2 bit adder
# Q = a + b
# CO is carry out
#
# inputs:
# In0,0 In0,1 are a0 , b0
# In1,0 In1,1 are a1 , b1
# outputs
# Out0 is Q0, Out1 is Q1, Out2 is CO

R0 = LOAD(In1,0)
R1 = LOAD(In1,1)
R2 = LOAD(In2,0)
R3 = LOAD(In2,1)

R4 = XOR(R0, R2)
R5 = AND(R0, R2)
Out0 = STORE(R4)

R6 = XOR(R1, R3)
R7 = AND(R1, R3)
R8 = XOR(R5, R6)
Out1 = STORE(R8)

R9 = AND(R5, R6)
R10 = OR(R9, R7)
Out2 = STORE(R10)

The first 3 lines need to list the 
Number of bits for inputs and outputs
Comment lines have # in column 1

LOAD and STORE are used to 
Indicate inputs and outputs into the
Circuit (they trigger encrypt/decrypt)

Use this format, no extra spaces
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adder_2bit sample output
• Program name bin/TB_adder_2bit
• Size of input and output registers. 
• Number of internal nodes
• Security parameters used 
• Test input and correct output
• Plaintext circuit runtime 1 msec
•

• Circuit size 
• Encrypted circuit run time

2113 msec, Efficiency 99.9053% 
• Circuit verified correctly
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Parity generator circuit

8 bits for input
(9th bit can be
set to 0 or
used for chaining 
multiple circuits
together for wider
words)

2 bits output
appropriate bit signals
even or odd parity

Out0
(Even)

Out1
(Odd)

In1,0

In1,8

In1,1

.

.

.
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Parity assembly code: examples/simple_ckts/parity

# number input1 bits 9
# number input2 bits 0
# number output1 bits 2
# Do not edit the top 3 lines!
# parity generator/checker 8 bits
# inputs:
# In0,0 .. In0,7 are 8 bits input with 
In0,8 as 0 for input (or cascade) 
# outputs
# Out0 is even Out1 is odd

R0 = LOAD(In1,0)
R1 = LOAD(In1,1)
R2 = LOAD(In1,2)
R3 = LOAD(In1,3)
R4 = LOAD(In1,4)
R5 = LOAD(In1,5)
R6 = LOAD(In1,6)
R7 = LOAD(In1,7)
R8 = LOAD(In1,8)

R9 = NOT(R0)
R10 = NOT(R1)
R11 = NOT(R2)
R12 = NOT(R3)
R13 = NOT(R4)
R14 = NOT(R5)
R15 = NOT(R6)
R16 = NOT(R7)
R17 = NOT(R8)

R18 = XOR(R9, R10)
R19 = XOR(R11, R12)

R20 = XOR(R13, R14)
R21 = XOR(R15, R16)

R22 = XOR(R18, R19)
R23 = XOR(R20, R21)

R24 = XOR(R22, R23)

R25 = XOR(R24, R17)
R26 = NOT(R25)

Out0 = STORE(R25)
Out1 = STORE(R26)
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Parity test:  examples/simple_ckts/parity

• Test program performs the following operations, using the same circuit as both a parity generator and 
parity checker. Note all data is encrypted. Decrypting the output determines the parity of the encrypted 
word.

Parity 
circuit

Parity 
circuit

Generator

Checker

Even

If Odd != 1 then error!
D0-D7

0 9 bit odd parity data wordD8

D0-D8
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Parity sample output

• Program name bin/TB_parity

• Circuit size 10 NOT, 8 XOR
• Encrypted circuit run time

3648 msec, Efficiency 99.9% 
• Circuit verified correctly
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Additional Complex 
Circuit Examples

From the PALISADE Encrypted Circuit Emulation 
repository
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Complex Circuit Examples for Further Exploration 
Currently the repository has examples taken from 
https://homes.esat.kuleuven.be/~nsmart/MPC/old-circuits.html

• The arithmetic examples are relatively quick, crypto examples have >10K 
gates so can take a long time to process and run
Arithmetic

Function File # ANDs # XORs # NOTs # ORs

32-bit Adder TB_adders 127 61 187 0

64-bit Adder TB_adders 256 115 379 0

32x32-bit Multiplier TB_multipliers 5926 1069 5379 0

32-bit comparisons TB_comparators 150 0 150/162 0

Crypto

Md5 hash TB_crypto 29084 14150 34627 0

SHA-256 TB_crypto 90825 42029 103258 0

AES 128 (No Key Expansion) TB_aes 6800 25124 1692 0

AES 128 (Key Expanded) TB_aes 5440 20325 1927 0

https://homes.esat.kuleuven.be/%7Ensmart/MPC/old-circuits.html
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THANK YOU

https://palisade-crypto.org

dcousins@dualitytech.com

https://palisade-crypto.org/
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